Темные светила: коричневые карлики
Темные светила: коричневые карлики
Коричневые карлики — космические тела с массой 1−8% солнечной. Они слишком массивны для планет, гравитационное сжатие делает возможным термоядерные реакции с участием «легкогорючих» элементов. Но для «зажигания» водорода их масса недостаточна, и поэтому, в отличие от полноценных звезд, светят коричневые карлики недолго...

Астрономы не ставят экспериментов — они получают информацию с помощью наблюдений. Как сказал один из представителей этой профессии, не существует настолько длинных приборов, чтобы ими можно было дотянуться до звезд. Однако в распоряжении астрономов имеются физические законы, которые позволяют не только объяснять свойства уже известных объектов, но и предсказывать существование еще не наблюдавшихся.

Предвидение Шива Кумара

Про нейтронные звезды, черные дыры, темную материю и иные космические экзоты, вычисленные теоретиками, наслышаны многие. Однако во Вселенной немало и других диковинок, открытых тем же способом. К их числу относятся тела, занимающие промежуточное положение между звездами и газовыми планетами. В 1962 году их предсказал Шив Кумар, 23-летний американский астроном индийского происхождения, только что защитивший докторскую диссертацию в Мичиганском университете. Кумар назвал эти объекты черными карликами. Позднее в литературе фигурировали такие имена, как черные звезды, объекты Кумара, инфракрасные звезды, однако в конце концов победило словосочетание «коричневые карлики» (brown dwarfs), предложенное в 1974 году аспиранткой Калифорнийского университета Джилл Тартер.

Четыре года международная команда астрономов «взвешивала» ультрахолодный карлик класса L (6,6% солнечной массы) с помощью телескопа «Хаббл», VLT и телескопа им. Кека
Четыре года международная команда астрономов «взвешивала» ультрахолодный карлик класса L (6,6% солнечной массы) с помощью телескопа «Хаббл», VLT и телескопа им. Кека

Кумар шел к своему открытию четыре года. В те времена основы динамики рождения звезд уже были известны, но в деталях оставались изрядные пробелы. Однако Кумар в целом столь верно описал свойства своих «черных карликов», что впоследствии с его заключениями согласились даже суперкомпьютеры. Все-таки человеческий мозг как был, так и остается лучшим научным инструментом.

Рождение недозвезд

Звезды возникают в результате гравитационного коллапса космических газовых облаков, которые в основном состоят из молекулярного водорода. Кроме того, там имеется гелий (один атом на 12 атомов водорода) и следовые количества более тяжелых элементов. Коллапс завершается рождением протозвезды, которая становится полноправным светилом, когда ее ядро разогревается до такой степени, что там начинается устойчивое термоядерное горение водорода (гелий в этом не участвует, поскольку для его поджога нужны температуры в десятки раз выше). Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн градусов.

Кумара интересовали самые легкие протозвезды с массой не выше одной десятой массы нашего Солнца. Он понял, что для запуска термоядерного горения водорода они должны сгуститься до большей плотности, нежели предшественники звезд солнечного типа. Центр протозвезды заполняется плазмой из электронов, протонов (ядер водорода), альфа-частиц (ядер гелия) и ядер более тяжелых элементов. Случается, что еще до достижения температуры поджога водорода электроны дают начало особому газу, свойства которого определяются законами квантовой механики. Этот газ успешно сопротивляется сжатию протозвезды и тем препятствует разогреву ее центральной зоны. Поэтому водород либо вообще не зажигается, либо гаснет задолго до полного выгорания. В таких случаях вместо несостоявшейся звезды формируется коричневый карлик.


Возможность вырожденного ферми-газа к сопротивлению гравитационному сжатию отнюдь не беспредельна, и это легко показать на пальцах. По мере того как электроны заполняют все более высокие уровни энергии, их скорости возрастают и в конце концов приближаются к световой. В этой ситуации сила тяготения одерживает верх и гравитационный коллапс возобновляется. Математическое доказательство сложнее, но вывод аналогичен. Так и получается, что квантовое давление электронного газа останавливает гравитационный коллапс, лишь если масса коллапсирующей системы остается ниже определенной границы, соответствующей 1,41 массы солнца. Она называется пределом чандрасекара — в честь выдающегося индийского астрофизика и космолога, который вычислил ее в 1930 году. Предел чандрасекара задает максимальную массу белых карликов, о чем нашим читателям наверняка известно. Однако предшественники коричневых карликов в десятки раз легче и о пределе чандрасекара могут не беспокоиться.

Кумар вычислил, что минимальная масса нарождающейся звезды равна 0,07 массы Солнца, если речь идет о сравнительно молодых светилах популяции I, которым дают начало облака с повышенным содержанием элементов тяжелее гелия. Для звезд популяции II, возникших более 10 млрд лет назад, во времена, когда гелия и более тяжелых элементов в космическом пространстве было гораздо меньше, она равна 0,09 солнечной массы. Кумар нашел также, что формирование типичного коричневого карлика занимает около миллиарда лет, а его радиус не превышает 10% радиуса Солнца. Наша Галактика, как и другие звездные скопления, должна содержать великое множество таких тел, но их трудно обнаружить из-за слабой светимости.

Как они зажигаются

Со временем эти оценки не особенно изменились. Сейчас считают, что временное возгорание водорода у протозвезды, родившейся из относительно молодых молекулярных облаков, происходит в диапазоне 0,07−0,075 солнечной массы и длится от 1 до 10 млрд лет (для сравнения, красные карлики, самые легкие из настоящих звезд, способны светить десятки миллиардов лет!). Как отметил в беседе с «ПМ» профессор астрофизики Принстонского университета Адам Барроуз, термоядерный синтез компенсирует не более половины потери лучистой энергии с поверхности коричневого карлика, в то время как у настоящих звезд главной последовательности степень компенсации составляет 100%. Поэтому несостоявшаяся звезда охлаждается даже при работающей «водородной топке» и тем более продолжает остывать после ее заглушки.

Протозвезда с массой менее 0,07 солнечной поджечь водород вообще не способна. Правда, в ее недрах может вспыхнуть дейтерий, поскольку его ядра сливаются с протонами уже при температурах в 600−700 тысяч градусов, порождая гелий-3 и гамма-кванты. Но дейтерия в космосе немного (на 200 000 атомов водорода приходится всего один атом дейтерия), и его запасов хватает всего на несколько миллионов лет. Ядра газовых сгустков, не достигших 0,012 массы Солнца (что составляет 13 масс Юпитера) не разогреваются даже до этого порога и поэтому не способны ни к каким термоядерным реакциям. Как подчеркнул профессор Калифорнийского университета в Сан-Диего Адам Бургассер, многие астрономы полагают, что именно здесь и проходит граница между коричневым карликом и планетой. По мнению представителей другого лагеря, коричневым карликом можно считать и газовый сгусток полегче, если он возник в результате коллапса первичного облака космического газа, а не родился из газопылевого диска, окружающего только что вспыхнувшую нормальную звезду. Впрочем, любые подобные определения — дело вкуса.

Еще одно уточнение связано с литием-7, который, как и дейтерий, образовался в первые минуты после Большого взрыва. Литий вступает в термоядерный синтез при несколько меньшем нагреве, нежели водород, и потому загорается, если масса протозвезды превышает 0,055−0,065 солнечной. Однако лития в космосе в 2500 раз меньше, чем дейтерия, и поэтому с энергетической точки зрения его вклад совершенно ничтожен.

Что у них внутри

Что же происходит в недрах протозвезды, если гравитационный коллапс не завершился термоядерным поджогом водорода, а электроны объединились вединую квантовую систему, так называемый вырожденный ферми-газ? Доля электронов в этом состоянии увеличивается постепенно, а не подскакивает за единый миг от нуля до 100%. Однако для простоты будем считать, что этот процесс уже завершен.

Принцип Паули утверждает, что два электрона, входящие в одну и ту же систему, не могут пребывать в одинаковом квантовом состоянии. В ферми-газе состояние электрона определяется его импульсом, положением и спином, который принимает всего два значения. Это означает, что в одном и том же месте может находиться не более пары электронов с одинаковыми импульсами (и, естественно, противоположными спинами). А поскольку в ходе гравитационного коллапса электроны пакуются во все уменьшающийся объем, они занимают состояния с возрастающими импульсами и, соответственно, энергиями. Значит, по мере сжатия протозвезды растет внутренняя энергия электронного газа. Эта энергия определяется чисто квантовыми эффектами и не связана с тепловым движением, поэтому в первом приближении не зависит от температуры (в отличие от энергии классического идеального газа, законы которого изучают в школьном курсе физики). Более того, при достаточно высокой степени сжатия энергия ферми-газа многократно превосходит тепловую энергию хаотического движения электронов и атомных ядер.
Опубликовано 25 февраля 2018 | Прочтений 898

Комментарии
Периодические издания






Информационная рассылка:

Рассылка The X-Files ... все тайны эпохи человечества



Электронный журнал:

THE X-FILES...
Все тайны эпохи человечества